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Abstract

In the paper we introduce a variant of autoepistemic logic that is espe-

cially suitable for expressing default reasonings. It is based on the notion of

iterative expansion. We show a new way of translating default theories into

the language of modal logic under which default extensions correspond exactly

to iterative expansions. Iterative expansions have some attractive properties.

They are more restrictive than autoepistemic expansions, and, for some classes

of theories, than moderately grounded expansions. At the same time iterative

expansions avoid several undesirable properties of strongly grounded expan-

sions, for example, they are grounded in the whole set of the agent’s initial

assumptions and do not depend on their syntactic representation.

Iterative expansions are defined syntactically. We define a semantics which

leads to yet another notion of expansion — weak iterative expansion — and we

show that there is an important class of theories, that we call T -programs, for

which iterative and weak iterative expansions coincide. Thus, for T -programs,

iterative expansions can be equivalently defined by semantic means. The ques-

tion of existence of a semantic definition of iterative expansions for general

theories remains open.

1 Introduction

One of the features of commonsense reasoning is the ability to draw conclusions in

a situation of incomplete information. For example, if a certain property holds “un-
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der normal circumstances” we are willing to accept that it indeed holds if we do not

have any information implying that the situation is “abnormal” However, a larger

set of facts, including information that the situation is “abnormal” does not imply

that the property holds. That is, a bigger set of assumptions does not imply all the

conclusions that are implied by the smaller set of assumptions. This makes classical

logic unsuitable as a tool for formally describing commonsense reasonings. Instead,

several nonclassical logics were proposed. Most important among them are first order

logic with closed world assumption (Reiter [1978]), default logic (Reiter [1980]), cir-

cumscription (McCarthy [1980]), inheritance nets with exceptions (Touretzky [1986]),

logic programming with negation (Apt et al. [1987]), and autoepistemic logic (Moore

[1985]).

The main idea is the same as in the classical logic. Namely, given a set of assump-

tions I, we want to construct a theory consisting of the consequences of I. However,

in addition to classical means of reasoning, in deriving consequences we use inference

rules that take into account the absence of information. Informally, if certain facts

needed in a particular derivation are unknown, the mechanism makes some assump-

tions about them and uses these assumptions in the derivation. Usually, there are

several possible ways of extending initial knowledge by assumptions about facts not

explicitly described. Thus, a given set of assumptions can have several possible sets

of consequences (and sometimes none). In other words, a given set of assumptions

and a mechanism used for drawing conclusions specify several possible descriptions of

the real world (or sometimes do not define any world at all). Our intention is that the
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set of original assumptions (knowledge base) and a mechanism to deal with incom-

plete information provide a possibly precise description of the world. To achieve that

the modification of the set of initial assumptions by new assumptions added where

explicit information was missing should be kept minimal.

Among the many existing formalisms that were proposed as a means of investigat-

ing commonsense reasoning Moore’s autoepistemic logic [1985] has recently gained in

importance. Autoepistemic logic is a modal logic with one modal operator K. The in-

tended interpretation of a modal formula Kp is “p is known” to an agent. For a given

set of assumptions I (some of them may involve the modal operator K) Moore defines

the notion of an expansion of I (in his paper he uses the term extension instead of

expansion). Expansions can be thought of as theories describing states of knowledge

grounded in I that might be derived from I by an agent with perfect introspection

capabilities. Let us note here that in his paper Moore introduced autoepistemic logic

to model belief sets rather than knowledge states of an agent.

The mechanism used to define expansions allows an agent to modify the set of

initial assumptions by adding modal facts of the forms Kφ and ¬Kφ that state

which facts are known and which are not known to him/her. That makes expansions

rather weakly grounded in the initial assumptions. For example, consider the set

I = {Kp ⇒ p}. One of the expansions of this set contains p. This is so, because

an agent can use in the reasoning formulas that state what he/she knows. Once

the agent chooses to assume that p is known, that is assumes Kp, p can be derived

which, in turn, justifies this added assumption and yields an expansion. Thus, p
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is a consequence of I only because the agent chooses to assume that p is known

to him. Because expansions are weakly grounded, they are difficult to relate to

theories that serve as consequence sets in other formalisms like default extensions,

truth maintenance system extensions, stable models for logic programs, all of which

are more strongly grounded in the original assumptions I in the sense that in the

reasoning the agent is not allowed to use formulas that state what is known but only

the formulas that state what is unknown to him/her.

To find a relationship between default logic and autoepistemic logic Konolige

[1988] introduced the notions of moderately and strongly grounded expansions. (The

original definition of strongly grounded expansions as given in [Konolige, 1988] is in-

correct. A correct version is given in [Konolige, 1989] and independently in [Marek

and Truszczyński, 1989a]). Konolige [1988] showed that each strongly grounded ex-

pansion is moderately grounded and that each moderately grounded expansion is

an expansion in the sense of Moore. His motivation was to find a subclass of thee

class of expansions that would exactly correspond to default extensions. Konolige

showed that under a certain interpretation of defaults as autoepistemic formulas, ex-

tensions of a default theory exactly correspond to strongly grounded expansions of

its autoepistemic interpretation.

Konolige’s strongly grounded expansions have, however, several counterintuitive

properties. They depend on the syntactic representation of initial assumptions.

That is, sets of assumptions equivalent in classical logic may have different strongly

grounded expansions. In particular sets of formulas {p} and {Kp ⇒ p, ¬Kp ⇒ p}
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are equivalent in classical logic whereas the first one has a strongly grounded ex-

pansion and the other one hase none. Moreover, a strongly grounded expansion is

grounded not in the set of initial assumptions I but in a subset of I, and in addition,

different strongly grounded expansions may be grounded in different subsets. This is

unnatural, as we expect an agent to design a knowledge base so that all its formulas

are relevant to the worlds they define. We discuss these issues again in more detail

at the end of Section 2.

The goal of this paper is to introduce and study a new variant of an expansion —

an iterative expansion. In contrast to strongly grounded expansions, iterative expan-

sions do not depend on the syntactic representation of the theory and are grounded

in the whole set I. The definition is simple and follows the general approach to non-

monotonic logics originated by McDermott and Doyle [1980] and McDermott [1982].

For several important classes of theories the class of iterative expansions is contained

in the class of moderately grounded expansions and coincides with the class of strongly

grounded expansions. Most importantly, iterative expansions provide a particularly

elegant and simple connection to default logic. Thus, the nonmonotonic modal logic

based on the notion of iterative expansion provides a natural modal formalization of

default logic.

In the paper we investigate properties of iterative expansions. We refer to the

modal logic that is based on iterative expansions as strong autoepistemic logic (SAL,

for short). Fundamental properties of iterative expansions are discussed in Section 2.

In particular, the relation of iterative expansions to moderately grounded expansions
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and strongly grounded expansions is studied. The notion of iterative expansion is

syntactic in nature. In the case of general autoepistemic theories we were not able

to find an equivalent semantic definition. In Section 3 we show, however, that for a

restricted class of theories, iterative expansions can be given a semantics similar to

Moore’s autoepistemic semantics for expansions. These considerations lead to another

subclass of the class of all expansions of a theory. Expansions of this type are called

weak iterative and are also studied in Section 3.

We also show that iterative expansions provide an elegant connection to default

logic. In Section 4 we show an interpretation — different from the one used by

Konolige — under which extensions of a default theory correspond exactly to iterative

expansions.

We conclude this section with some terminology. The investigations of autoepis-

temic logic have so far concentrated on the propositional case. Some limited exten-

sions to first order logic were also studied [Konolige, 1988], but despite the efforts

of several researchers ([Marek, 1989, Niemelä, 1988a, Niemelä, 1988b]) no general

predicate variant of autoepistemic logic has been discovered, yet. In this paper we

also deal with only the propositional case. There are several notational conventions

that we use throughout the paper. We fix a language L of propositional calculus and

by Lit we denote the set of all literals (i.e. atoms or their negations) from L. By

LK we denote the extension of L by the modal operator K. Thus, the autoepistemic

formulas we consider are exactly formulas from LK . By Cn we denote the operator

of propositional consequence. We will apply it to theories contained in L or LK . It
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will always follow from the context whether Cn should be treated as the consequence

operator in L or in LK . For a theory T ⊆ LK we define KT = {Kφ : φ ∈ T},

¬T = {¬φ : φ ∈ T}, and T = {φ : φ 6∈ T}. A formula of the form

Kφ1 ∧ . . . ∧Kφk ∧ ¬Kψ1 ∧ . . . ∧ ¬Kψr ⇒ ω, (1)

where φi ∈ LK , 1 ≤ i ≤ k, ψi ∈ LK , 1 ≤ i ≤ r, and ω ∈ L, is called an autoepistemic

clause (ae-clause, for short). Note that the antecedent of an ae-clause may be missing.

Consequently, each formula of L is an ae-clause. We often write ae-clauses as A⇒ ω,

possibly with indices. If all φi, ψi belong to L, than such an ae-clause is called a

K-clause. A K-clause is called a program K-clause if all φi, ψi and ω are literals of L.

An ae-clause of the form

Kφ1 ∧ . . . ∧Kφk ∧ ¬KKψ1 ∧ . . . ∧ ¬KKψr ⇒ ω, (2)

where φi ∈ L, 1 ≤ i ≤ k, ψi ∈ L, 1 ≤ i ≤ r, and ω ∈ L is called a T -clause, and if

all φi, ψi and ω are literals of L, a program T -clause. Finally, a collection of program

K-clauses (resp. T -clauses) is called a K-program (resp. T -program).

All modal logics considered in the paper have two inference rules: modus ponens

and necessitation (φ/Kφ). Their axioms include all propositional tautologies in LK

and some axiom schemata that specify properties of the operator K. Among most

widely considered are for example (see [Chellas, 1980]):

K K(φ⇒ ψ) ⇒ (Kφ⇒ Kψ),

T Kφ⇒ φ,
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4 Kφ⇒ KKφ,

5 ¬Kφ⇒ K¬Kφ.

By K we denote the modal logic based on the axiom K, T denotes the logic based

on axioms K and T , S4 is the logic based on K, T and 4, S5 is based on K, T , 4

and 5, and K45 on K, 4 and 5.

To facilitate reading all the proofs were gathered at the end of the paper in the

appendix.

2 Iterative expansions

The first important attempt to systematically study nonmonotonic reasoning within

modal logic was made by McDermott and Doyle [1980] and was further developed

by McDermott [1982]. Let S be a modal logic. By CnS we mean the consequence

operator for logic S. McDermott and Doyle described a construction which, for

every modal logic S produces its nonmonotonic variant. They argued that in a

nonmonotonic logic corresponding to S, a theory T should be considered as a set of

consequences of an initial theory I if and only if T is exactly the set of facts that can

be derived from I and all modal facts of the form “¬φ is consistent”, that is, formulas

from ¬KT . McDermott and Doyle formalized this intuition by a fixed point equation

T = CnS(I ∪ ¬KT ), (3)

and proposed to consider its solutions as candidates for the set of consequences of I.

Let us call solutions to this equation S-expansions. The operator CnS is, of course,
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monotonic. But T appears on both sides of the equation (3 and the dependence of

T on I is no longer monotonic. In particular, a theory can have no S-expansions,

exactly one S-expansion, or many S-expansions. We refer to the logic based on (3)

as the nonmonotonic logic S.

The definition of an S-expansion can be looked at in terms of context-dependent

proofs. Let T be a theory, called the context. We say that a formula φ has in logic

S a T -proof (context-dependent proof with context T ) from I if φ has a proof in

logic S from I ∪ ¬KT . A context T is an S-expansion if T consists of exactly those

facts that have a T -proof from I. Thus, in this type of context-dependent reasoning

the context is used to modify the initial theory I. After that, we reason just like

in a monotonic logic S and then, we accept the context T as a “consequence” of I

precisely if T consists of formulas possessing a T -proof (in S). Clearly the notion of

the context-dependent proof can be extended by allowing context not only to have

influence on how the initial theory is modified but also on what inference rules are

used in the reasoning.

Note that (3) defines a whole family of modal nonmonotonic logics. Choosing

different modal logic S will usually yield a different nonmonotonic logic. McDermott

and Doyle [1980] considered the case where S is a classical propositional logic (note

though that they did not allow for the necessitation rule). The resulting nonmono-

tonic logic had several counterintuitive properties and was abandoned as a possible

formalism for describing commonsense reasonings. McDermott [1982] proposed sev-

eral other candidates for logic S, among them T , S4 and S5, and studied in detail
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the case of logic S5. However, the resulting nonmonotonic logic also did not turn out

to be suitable for commonsense reasoning applications.

These investigations were continued by Moore [1985]. He introduced an apparently

different nonmonotonic modal logic through the following fixed point equation:

T = Cn(I ∪KT ∪ ¬KT ). (4)

Moore called solutions to this equation expansions of I. It is easy to see that expan-

sions satisfy the following three properties:

(ST1) T = Cn(T ),

(ST2) If φ ∈ T then Kφ ∈ T ,

(ST3) If φ 6∈ T then ¬Kφ ∈ T .

The conditions (ST2) and (ST3) capture the intuition of full introspection of an agent.

Think of T as the total knowledge of an agent. Then, if the agent knows φ (that is,

if φ ∈ T ), then the agent knows that he/she knows φ (that is, Kφ ∈ T ). Similarly, if

the agent does not know φ (that is, φ 6∈ T ), then the agent knows that he/she does

not know φ (that is, ¬Kφ ∈ T ). Thus, Moore argued that expansions describe sets of

beliefs of an agent with full introspection. Moore called the logic based on expansions

autoepistemic logic.

The conditions (ST1) – (ST3) were introduced by Stalnaker [1980] who called

any theory T ⊆ LK which satisfies them stable. Intuitively, expansions of I are

those stable sets containing I that are “grounded” in I, that is consisting of exactly
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those facts that the agent can derive from I and facts available to him/her through

introspection.

Autoepistemic logic also falls into the category of context-dependent formalisms.

The proof means used are the simplest possible, only modus ponens and tautologies

of the propositional calculus, but the modification of I is more substantial than in

the case of McDermott and Doyle’s scheme — not only ¬KT but also KT are added

to the original theory I. However, the difference between Moore’s definition and the

scheme of McDermott and Doyle is only superficial. Later, Shvarts [1988b] proved

that a consistent theory is an expansion if and only if it is a K45-expansion (see also

Corollary 3.8 below). Thus, the autoepistemic logic of Moore is just a special case of

the general scheme of McDermott and Doyle.

In general, a theory may have multiple expansions or no expansion at all. For

objective theories the situation is simpler. It was proved by Moore [1985] that for

each subset S ⊆ L there is exactly one stable set T satisfying Cn(S) = T ∩ L.

Moreover, this unique stable set is also the unique expansion of S. For a consistent

set S, this expansion (denoted in the paper by E(S)) can be defined by an iterative

process as follows [Marek, 1989]: define LK,n to be the subset of LK consisting of all

formulas with K-depth at most n and put

E0(S) = Cn(S) ∩ L,

En+1(S) = LK,n+1 ∩ Cn(En(S) ∪KEn(S) ∪ ¬K(LK,n − En(S))),
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and finally,

E(S) =
∞⋃

n=0

En(S).

It can be shown [Marek, 1989] that for every non-negative integer n,

En(S) = E(S) ∩ LK,n.

As we already mentioned, expansions are rather weakly grounded in the initial

theory. In some expansions, a fact p is present simply because the agent assumed

that p is known and this assumption allows for the derivation of p (for instance in

the case of the theory {Kp⇒ p}). In other words, Kp is established before p is. Our

approach is to introduce a variant of the notion of expansion, that requires that in

order to prove Kp, fact p has to be derived earlier and without a reference to Kp. To

this end we introduce an operator A by

A(S) = Cn(S ∪KS).

The operator A is monotone and finitizable. Let I ⊆ LK and T ⊆ LK . Define

AT
0 (I) = Cn(I ∪ ¬KT ),

AT
n+1(I) = A(AT

n (I)) = Cn(AT
n (I) ∪KAT

n (I)),

and let

AT (I) =
∞⋃

n=0

AT
n (I).

Observe that AT (I) is simply the set of all consequences of I ∪ ¬KT in the logic

that consists of all tautologies of the propositional calculus, uses modus ponens and
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necessitation. We will denote such a logic by N . Thus,

AT (I) = CnN (I ∪ ¬KT ). (5)

So, instead of considering a rich modal logic like T, S4, S5 (McDermott [1982], Shvarts

[1988a, 1988b]) or K45 (Konolige [1988], Shvarts [1988b]), we consider the simplest

possible modal logic with no axiom schemata involving the operator K other than

the tautologies of LK . Thus, in fact, our logic is very close to the logic originally

considered by McDermott and Doyle [1980], the only difference being that we use

necessitation as an inference rule.

For a theory I, we call its N -expansions iterative expansions. The nonmonotonic

logic corresponding to logic N will be called strong autoepistemic logic (SAL, for

short). In the remainder of this section we present several fundamental properties of

the operator AT (I) and iterative expansions. The first result (established in [Marek

and Truszczyński, 1989a]) shows that the class of iterative expansions of I is a subclass

of the class of all expansions.

Proposition 2.1 Let I ⊂ L. If T is an iterative expansion of I, then T is an

expansion of I.

The converse of this statement does not hold. For example, the theory {Kp⇒ p}

has two expansions: E(TAUT ), where TAUT stands for the set of all tautologies in

L, and E({p}). Only the first of them is iterative. There is, however, a wide class of

theories for which notions of expansion and iterative expansion coincide. Let us call

an ae-clause of the form (1) negatively determined if k = 0, that is if the antecedent
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of the clause does not contain conjuncts Kφ. We have the following theorem.

Theorem 2.2 Let I consist of negatively determined ae-clauses. Then T ⊆ LK is

an expansion of I if and only if T is an iterative expansion of I.

Let us call an ae-clause positively determined if the antecedent of the clause does

not contain conjuncts ¬Kφ, that is r = 0 in (1). An important property of theories

consisting of positively determined T -clauses is that they have exactly one iterative

expansion — possibly inconsistent.

Theorem 2.3 If a theory I consists of only positively determined T -clauses then I

has exactly one iterative expansion T . Moreover, for any stable set T ′ containing I,

T ∩ L ⊆ T ′ ∩ L.

Theorem 2.3 indicates that there is a strong analogy between positively determined

T -clauses in the language LK and Horn clauses in logic programming, and between

iterative expansions of theories consisting of positively determined clauses and least

Herbrand models of Horn programs. The analogy would be even richer if we extended

the definition of a Horn clause to allow a negated atom in the head. Then, as in the

case of theories consisting of positively determined ae-clauses, an inconsistent set of

literals might be the only “answer set” for an extended Horn program.

As we said earlier, expansions are rather weakly grounded in I because, when

reasoning, an agent is allowed to use in addition to facts from I all facts in KT∪¬KT .

The idea behind the notion of the iterative expansion is to allow in reasoning only

the facts in ¬KT in addition to the facts in I. Another appealing class of expansions
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can be defined through the parsimony (or minimality) principle. Let T1 and T2 be

two stable sets. We say that T1 ⊑ T2, if T1 ∩ L ⊆ T2 ∩ L, that is, if the objective

part of T1, that is T1 ∩L, is contained in the objective part of T2 (T2 ∩L). Note that

⊑ is a partial ordering for the class of stable sets. Following Konolige [1988] we say

that a stable set T containing I (resp. expansion T of I) is ⊑-minimal if no other

stable set T ′ containing I satisfies T ′ ⊑ T . Note, that according to this definition,

if T is an expansion of I and no other expansion T ′ of I satisfies T ′ ⊑ T , it does

not necessarily mean that T is ⊑-minimal. The expansion T is ⊑-minimal only if no

other stable set T ′ containing I, satisfies T ′ ⊑ T . Minimal expansions and stable

sets are attractive candidates for the set of beliefs (or known facts) of an agent with

an initial set of beliefs (knowledge) I because they limit the assumptions the agent

makes about the world. Konolige [1988] proved that ⊑-minimal expansions coincide

exactly with moderately grounded expansions.

Below we show that for an important class of theories iterative expansions are ⊑-

minimal stable sets (and hence, ⊑-minimal expansions). Consequently, by Konolige’s

result, for these classes of theories each iterative expansion is moderately grounded.

Theorem 2.4 Let I ⊆ LK consist of K-clauses. Then, every iterative expansion of

I is ⊑-minimal. Consequently, each iterative expansion of I is moderately grounded.

Let us note that Theorem 2.4 does not hold in general. Consider the theory

I = {¬K(¬Kp) ⇒ p}. Theory I has two iterative expansions: E(∅) and E({p}).

Thus, the iterative expansion E({p}) is neither a ⊑-minimal expansion nor a ⊑-

minimal stable set.
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A similar result holds for T -clauses. It is a simple corollary from Theorem 4.2

(Section 4), and the proof follows immediately from the proof of Theorem 4.2 in the

appendix.

Theorem 2.5 Let I consist of T -clauses. Then, every iterative expansion of I is

⊑-minimal. Consequently, each iterative expansion of I is moderately grounded.

A similar example as before (I = {¬KK(¬Kp) ⇒ p}) shows that the converse

fails in this case, too. Consider now two theories I1 = {¬Kp ⇒ q, Kp ⇒ p} and

I2 = {¬KKp ⇒ q, Kp ⇒ p}. Each has two moderately grounded expansions E(p)

and E(q) but only one iterative expansion E(q). Thus, for theories consisting of K-

clauses and for theories consisting of T -clauses, iterative expansions form a strictly

smaller class than the class of moderately grounded expansions.

Logic N can be also used to define several types of expansions other than it-

erative expansions. The approach is based on the following result (see [Marek and

Truszczyński, 1989a]).

Proposition 2.6 Let I ⊆ LK. Let I ′ ⊆ I and let T be an iterative expansion of I ′.

If I ⊆ T , then T is an iterative expansion of I.

Different choices for I ′ thus lead to different classes of expansions. Consider a

theory I consisting of ae-clauses. Define

GC(I, T ) = {Kα1 ∧ . . . ∧Kαm ∧ ¬Kβ1 . . . ∧ ¬Kβn ⇒ ω ∈ I :

α1, . . . , αm ∈ T, β1, . . . , βn /∈ T}.
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Clauses in GC(I, T ) are called generating. We have the following proposition.

Proposition 2.7 If T = AT (GC(I, T )) then T is an iterative expansion of I.

Iterative expansions satisfying T = AT (GC(I, T )) will be called GC-iterative.

Construction GC(I, T ) was first given in Marek and Truszczynski [1989a], where it

was shown that GC-iterative expansions (called there strongly iterative) correspond

exactly to extensions of default theories thus giving an alternative description of the

relationship between default and autoepistemic logics. As a consequence, it follows

that GC-iterative expansions coincide with strongly grounded expansions of Konolige.

Let us discuss now iterative and GC-iterative (strongly grounded) expansions

as candidates for the sets of conclusions of an agent with full introspection. First,

observe that different GC-iterative expansions of I may be grounded in different

subtheories of I. This is unnatural, as each set of consequences of I should be

grounded in I in its entirety. The theory I is not arbitrary — it corresponds to the

agent’s perception of the world. Thus we have to assume that the agent designed

I to fit his/her knowledge, and we should avoid modifying it. In addition, since

theory GC(I, T ) depends on the syntactic representation of the formulas in I, GC-

iterative expansions depend on the syntactic representation of the formulas in I.

For example, theories {Kp ⇒ p, ¬Kp ⇒ p} and {p} are logically equivalent but

only the latter has a GC-iterative expansion E(p). This is certainly an unpleasant

property of GC-iterative (strongly grounded) expansions. Secondly, and perhaps

more importantly, because GC-iterative expansions are grounded in GC(I, T ) they
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are too restrictive. Information that can be obtained from I by means of logic N

(and that naturally should form a part of any set of consequences of I) sometimes will

not be derivable from GC(I, T ). For example, if I = {Kp ⇒ q, K(Kp ⇒ q) ⇒ a},

then E(a) is a natural expansion of I (it is iterative), yet I has no strongly grounded

expansions. In particular, T = E(a) is not a strongly grounded expansion of I because

GC(I, T ) = {K(Kp⇒ q) ⇒ a}, and does not allow for a derivation of a.

Iterative expansions do not have these disadvantages. They are grounded in the

whole set I and do not depend on the syntactic representation of the formulas in

I. They form a smaller class than expansions of I and, for theories consisting of K-

clauses or T -clauses, smaller than moderately grounded expansions of I. Thus, the

notion of iterative expansion is an attractive candidate for the set of consequences of

I that an agent with full introspection might derive.

3 Semantical issues

The notion of iterative expansion was defined syntactically. In this section we will

define another notion of expansion, through semantical means, and show that in

some cases this new class of expansions coincides with iterative expansions. Thus, a

semantics will be given to a substantial fragment of SAL.

Let us recall that it was a semantic argument that originally led Moore to the

notion of expansion. Let T be a theory in LK . An autoepistemic interpretation with

respect to T is any interpretation v of LK that satisfies additional conditions:
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AI1 if φ ∈ T , then v(Kφ) = 1,

AI2 if φ /∈ T , then v(Kφ) = 0.

As argued by Moore, this requirement captures the perfect introspection capabilities

of an agent given by the stability conditions. Now, we say that I T -entails φ (in

symbols: I|=Tφ) if and only if φ is true in all autoepistemic interpretations with

respect to T which satisfy I. Moore defines an expansion to be any theory T such

that T = {φ : I|=Tφ}. Since the class of autoepistemic interpretations is quite

narrow, expansions of I are only weakly grounded in I.

To make them more strongly grounded, a wider class of interpretations has to be

considered. Let us call an interpretation v of LK a weak autoepistemic interpretation

with respect to T if v satisfies the following two conditions:

WAI1 if φ ∈ T then v(φ⇒ Kφ) = 1,

WAI2 if φ /∈ T then v(Kφ) = 0.

It is clear that every autoepistemic interpretation is a weak autoepistemic interpreta-

tion. The converse does not hold in general. The major difference is that for a weak

autoepistemic interpretation we may have v(Kφ) = 0 for φ ∈ T , provided v(φ) = 0.

The intuition behind this relaxation of condition AI1 is the following. If v does not

assign value 1 to formula φ ∈ T then there is no reason why it should assign value 1

to formula Kφ.

Let us now define the notion of strong T -entailment. We say that I strongly T -
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entails φ (in symbols: I|=Tφ) if φ is true in every weak autoepistemic interpretation

with respect to T in which all formulas of I are true. Theory T is a weak iterative

expansion of I if

T = {φ : I|=Tφ}. (6)

Clearly, this semantic approach has a syntactic counterpart. By the definition of |=T ,

we have

{φ : I|=Tφ} = {φ : I ∪ (T ⇒ KT ) ∪ ¬KT |=φ},

where T ⇒ KT abbreviates the set {φ ⇒ Kφ : φ ∈ T} and |= is the standard

propositional entailment. Consequently, by the completeness theorem of propositional

calculus we obtain

{φ : I|=Tφ} = Cn(I ∪ (T ⇒ KT ) ∪ ¬KT ).

Thus, weak iterative expansions can be alternatively defined through the following

(syntactic) fixed point equation:

T = Cn(I ∪ (T ⇒ KT ) ∪ ¬KT ). (7)

It is now evident (by analysis of equation (7)), that if T is a weak iterative expansion

then it is a stable set. In addition we have the following fact which justifies the term

weak iterative expansion.

Proposition 3.1 Every weak iterative expansion of I is an expansion of I.

Next, we investigate the relationship between weak iterative and iterative expan-

sions. Intuitively, the role of formulas in T ⇒ KT is to replace the necessitation rule
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of logic N . Whenever we use necessitation when deriving Kφ from φ in the process

of constructing an iterative expansion, we could replace it by inserting he formula

φ ⇒ Kφ into the proof, right after φ, and by applying modus ponens. This shows

that the notions of weakly iterative and iterative expansions are deeply connected.

Indeed, we have the following result.

Proposition 3.2 If T is an iterative expansion of I then T is a weak iterative ex-

pansion of I.

The converse implication does not hold in general. Several examples are given at

the end of the next section. The reason for that seems to be the fact that modal logic

N , like most modal logics, does not satisfy the deduction theorem. That is, T∪{φ} ⊢N

ψ does not imply T ⊢N φ ⇒ ψ. (For example, let T = {¬Kp ∨ ¬Kq,¬Kp ⇒ r},

φ = q. Then, T∪{φ} ⊢N r, but it is easy to see that T 6⊢N q ⇒ r.) This, in particular,

implies that deduction in N cannot be reduced to deduction in propositional calculus.

Thus, iterative expansions (solutions to T = CnN (I ∪ ¬KT )) cannot, in general, be

expressed by means of the classical consequence operator Cn.

We shall show now an important class of theories which have the property that

iterative expansions are expressible in terms of the operator Cn, and in fact, coincide

with weak iterative expansions.

Theorem 3.3 Let I be a T -program. If T ⊆ LK is consistent, then, a theory T is

an iterative expansion of I if and only if T is a weak iterative expansion of I.

We consider now the question of relevance of the restriction to T -programs in
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Theorem 3.3. It turns out that Theorem 3.3 cannot be improved.

Example 3.1 (a) Let I1 = {Ka ⇒ b, K(a ⇒ b) ⇒ a}. Then I1 possesses two

expansions, E(TAUT ), and E({a, b}). Both of these expansions are weak iterative,

the first one is iterative, the other is not. Checking that E(TAUT ) is an iterative

expansion and that E({a, b}) is not an iterative expansion is straightforward. We shall

show that T1 = E({a, b}) is a weak iterative expansion of I1. A careful inspection

shows that it is enough to prove that E0({a, b}) ⊆ Cn(I1 ∪ (T1 ⇒ KT1) ∪ ¬KT 1).

This is shown as follows: since a ∈ T1, a ⇒ Ka ∈ (T1 ⇒ KT1). Since Ka ⇒ b ∈ I,

a ⇒ b ∈ Cn(I ∪ (T1 ⇒ KT1). But then a ⇒ b ∈ T1 and so (a ⇒ b) ⇒ K(a ⇒

b) ∈ (T1 ⇒ KT1). Consequently, K(a ⇒ b) ∈ (T1 ⇒ KT1). Using the fact that

K(a ⇒ b) ⇒ a ∈ I, we find that a ∈ Cn(I ∪ (T1 ⇒ KT1) ∪ ¬KT 1). Consequently,

b ∈ Cn(I ∪ (T1 ⇒ KT1)∪¬KT 1), too. This example shows that the assumption that

the formulas in the antecedent of the implication are of the form Ka with a ∈ Lit

cannot be dropped.

(b) Let I2 = {¬Kc ⇒ b,¬Ka ⇒ c,¬Kb ⇒ a,Ka ⇒ b,Kb ⇒ c,Kc ⇒ a}. Then

T2 = E({a, b, c}) is the only expansion of I2, it is a weak iterative expansion of

I2 but it is not an iterative expansion of I2. The argument is similar to that of

(a). It is straightforward to show that T2 is not an iterative expansion. To show

that T2 = E({a, b, c}) is weak iterative, one shows that equivalences Ka ⇔ Kb,

Ka ⇔ Kc, Kc ⇔ Kb are all in Cn(I ∪ (T2 ⇒ KT2) ∪ ¬KT2). ¿From this one gets

that Ka ⇒ c,Kc ⇒ b,Kb ⇒ a all are in Cn(I ∪ (T2 ⇒ KT2) ∪ ¬KT2) The rest

follows easily. This example shows that the assumption that negated formulas in the
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antecedent have prefix ¬KK cannot be dropped.

(c) Let I3 = {a ∨ b, c ⇒ a, c ⇒ b,Ka ⇒ c,Kb ⇒ c}. As before it is straightforward

to show that T3 = E({a, b, c}) is an expansion of I3 and that it is not an iterative

expansion. On the other hand, it is a weak iterative expansion. For having a ⇒ Ka

and b ⇒ Kb allows one to prove Ka ∨Kb (from I3) and then c. Thus also a and b

can be derived. This example shows that the assumption that successors of epistemic

implications are literals cannot be dropped.

(d) The assumption that T is consistent cannot be dropped either. Consider theory

I = {Ka ⇒ b,K¬a ⇒ b,Kc ⇒ ¬b,K¬c ⇒ ¬b}. It is easy to see that LK is a weak

iterative expansion of I. On the other hand, LK is not an iterative expansion of I.

Finally, let us note that consistent weak iterative expansions can be given a fixed

point characterization of type (3). Let S stand for a modal logic that uses necessita-

tion as an inference rule, A for the set of all instances of axioms that are satisfied by

S, and let I denote the set of initial assumptions (I ⊆ LK). We have the following

proposition.

Proposition 3.4 If

(a) A ⊆ Cn(I ∪ (T ⇒ KT ) ∪ ¬KT ), and

(b) (T ⇒ KT ) ⊆ CnS(I ∪ ¬KT ),

then T is a weak iterative expansion of I if and only if T is an S-expansion of I.

Consider now the following two axiom schemata:

(A1) Kφ⇒ KKφ (this is simply the axiom schema 4),
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(A2) ¬K¬Kφ⇒ (φ⇒ Kφ) (notice that (A2) is a weaker version of axiom schema

5).

Let us denote by 4+ the modal logic containing (A1) and (A2) and closed under

necessitation and modus ponens. It is easy to see that if T is consistent, then logic

4+ satisfies conditions (a) and (b) of Proposition 3.4. Thus, we get the following

corollary.

Corollary 3.5 A consistent theory T is a weak iterative expansion of I if and only

if it is an 4+-expansion of I (that is, a solution to T = Cn4+(I ∪ ¬KT )).

Similar results hold for expansions. Under the same notation as before, we have

the following general result.

Proposition 3.6 If

(a) A ⊆ Cn(I ∪KT ∪ ¬KT ), and

(b) KT ⊆ CnS(I ∪ ¬KT ),

then T is an expansion of I if and only if T is an S-expansion of I.

The proof is similar to that of Proposition 3.4 and is omitted. Proposition 3.6

implies that consistent expansions can be characterized as 5-expansions where by 5

we mean a modal logic satisfying axiom 5: ¬K¬Kφ⇒ Kφ (Chellas [1980]).

Corollary 3.7 A consistent theory T is an expansion of I if and only if it is an

5-expansion of I (that is, a solution to T = Cn5(I ∪ ¬KT ).

Several other logics satisfy the requirements of Proposition 3.6. Examples are
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logics K45, K5 and 45. Thus, the following corollary follows.

Corollary 3.8 Consistent expansions of I are characterized as: K45-expansions

(Shvarts [1988b]), K5-expansions, 45-expansions, 5-expansions of I.

Our results seem to indicate that the presence of axiomsK and 4 is incidental and that

logics not containing axiom K are naturally related to various classes of expansions.

4 Iterative expansions and default extensions

The goal of this section is to study the problem of expressing default extensions by

means of iterative expansions. To better motivate the solution we propose here, let

us briefly recall the result of [Marek and Truszczyński, 1989a], where extensions are

shown to correspond to GC-iterative (strongly grounded) expansions. Assume that

we consider Konolige’s translation of default logic into autoepistemic logic, that is

given default d = α:β1,...,βn

ω
we assign to it a K-clause trK(d) given by:

trK(d) = (Kα ∧ ¬K¬β1 ∧ . . . ∧ . . .¬K¬βn) ⇒ γ

The default theory (D,W ) is then translated to trK(D,W ) = W ∪ {trK(d): d ∈ D}.

Let T be a stable theory containing I = trK(D,W ). In [Marek and Truszczyński,

1989a] we proved the following:

Theorem 4.1 A theory S ⊆ L such that S = Cn(S) is an extension of (D,W ) if

and only if the unique stable set T such that S = T ∩ L is a GC-iterative (strongly

grounded) extension of trK(D,W ).

25



Although it completely characterizes relationship of extensions in default logic and

expansion in autoepistemic logic, this theorem is not completely satisfactory as it

uses GC-iterative (strongly grounded) expansions. We argued in the previous section

that GC-iterative expansions have several undesirable properties.

It would be desirable to find a construction that would not require using GC-

iterative (strongly grounded) expansions. A close analysis of Konolige’s translation

shows that it is not appropriate for representing defaults as modal formulas. In the

default p:
q

, p is interpreted as “p is provable” and in the default :¬p

q
, ¬p is interpreted

as “p is not in the context”, and one is not the negation of the other. However, after

the translation, the corresponding autoepistemic expressions are Kp and ¬Kp, and

one is the negation of the other. Thus the key to our new approach is to use a dif-

ferent interpretation of defaults in autoepistemic logic. We translate now a default

d = α:β1,...,βn

ω
to the following T -clause:

trT (d) = (Kα ∧ ¬KK¬β1 ∧ . . . ∧ . . .¬KK¬βn) ⇒ ω,

and define trT (D,W ) analogously as trK(D,W ). Consider again the defaults p:
q

and

:¬p

q
. Now, after the translation, Kp corresponds to “p is provable” and ¬KKp to

“p is not in the context”. Clearly, ¬KKp is not the negation of Kp. Thus this

translation better captures our interpretation of the prerequisite and justification

parts of defaults.

It turns out that this new translation allows for an extremely simple and elegant

correspondence result between default logic and SAL in which default extensions
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translate exactly into iterative expansions. The proof we give here is a streamlined

variant of the argument of [Marek and Truszczyński, 1989a]. But first, we need to

recall some concepts of default logic (see [Reiter, 1980] and [Marek and Truszczyński,

1989a]). Let D be a set of defaults, and let S ⊆ L. For W ⊆ L we put:

RD,S(W ) = Cn(W ∪ {c(d) : d ∈ D, p(d) ∈W, ∀β∈j(d) ¬β 6∈ S}).

Then, we iterate operator RD,S on W :

RD,S
0 (W ) = Cn(W ),

RD,S
n+1(W ) = RD,S(RD,S

n (W )),

for n ≥ 0. Thus,

RD,S
n+1(W ) = Cn(RD,S

n ∪ {c(d) : d ∈ D, p(d) ∈ RD,S
n (W ), ∀β∈j(d) ¬β 6∈ S}).

Finally, we put

RD,S
∞ (W ) =

∞⋃

n=0

RD,S
n (W ).

Theory S is an extension of a default theory (D,W ) if and only if RD,S
∞ (W ) = S.

This definition, although different form the original Reiter’s definition, is equivalent

to it.

There is an evident similarity between the definitions of extensions and iterative

expansions. This is not coincidental as the next theorem shows.

Theorem 4.2 Let (D,W ) be a default theory. A theory S ⊆ L, closed under proposi-

tional consequence, is an extension of (D,W ) if and only if S = T ∩L for an iterative

expansion T of trT (D,W ).

27



Corollary 4.3 Let I be a theory consisting of T -clauses. Theory T is an iterative

expansion of I if and only if T is a GC-iterative (strongly grounded) expansion of I.

Theorems 4.2 and 3.3 give a semantics based on weak autoepistemic interpreta-

tions, for a substantial fragment of default logic, namely for those default theories

(D,W ) in which W ⊆ Lit and every default is of the following form:

a1 ∧ · · · ∧ an; b1, . . . , bm
c

,

where all ai, bi and c are literals.

5 Conclusions

In the paper we introduced a new class of expansions — iterative expansions. Iterative

expansions have several advantages over previously studied classes of expansions. The

class of iterative expansions of I is properly included in the class of Moore’s expansions

of I and, for several important classes of theories, in the class of moderately grounded

expansions of Konolige. In addition, unlike strongly grounded expansions, they do not

depend on the syntactic representation of the initial knowledge I and are grounded

in the whole I. Thus, the notion of iterative expansion is an attractive candidate for

the set of consequences of I that an agent with full introspection might derive.

We presented a semantics that defines another type of expansion — weak iterative

expansion. We showed that for the class of T -programs iterative expansions and

weak iterative expansions coincide. This result provides a natural semantics for a

nonmonotonic logic N if we restrict ourselves to T -programs. The question of an
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existence of a general list-like semantic approach to iterative expansions remains open.

Let us note that in this paper for the first time in the context of commonsense

reasonings modal logics were studied that do not satisfy axiom schema K (neither N

nor 4+ contain K). It is interesting that weak logic such as N , without any axioms

to simplify modalities turns out to be useful in formalizing methods of reasoning

with incomplete information. As our correspondence result (Theorem 4.2) shows,

nonmonotonic logic N with its iterative expansions can be regarded as a generalization

of the default logic of Reiter. Since the logic N does not satisfy axiom schema K

and thus cannot be given a traditional Kripke “possible worlds” semantics (each such

semantics satisfies schema K, or at least some of its weaker variants) it provides an

explanation of the difficulties with constructing Kripke-like semantics for default logic.

As our correspondence result shows, default reasonings are in fact carried out in logic

N and thus cannot be given a standard Kripke possible worlds interpretation. Let us

briefly mention, though, that recently Fitting has found a Kripke-like semantics for

logic N that requires infinitely many accessibility relations. Thus also default logic

can be given a similar semantics.

6 Appendix — Proofs

In the proofs we will use the following two lemmas. The first was proved in [Marek and

Truszczyński, 1989a]. It collects several simple properties of sets AT (I) and AT
n (I).

Lemma 6.1 (a) Theory AT (I) is closed under necessitation, that is, KAT (I) ⊆

AT (I).
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(b) For all n ∈ N , AT
n+1(I) = Cn(I ∪KAT

n (I) ∪ ¬KT ).

(c) For all n ∈ N , AT
n+1(I) = Cn(I ∪ AT

n (I) ∪KAT
n (I) ∪ ¬KT ).

(d) If T is stable and I ⊆ T , then for all n ∈ N , AT
n (I) ⊆ T . Consequently, AT (I) ⊆

T .

Lemma 6.2 Let T = E(S) for some consistent subset S of L. If S ⊆ AT (I) then

T ⊆ AT (I).

Proof. By induction on n we will prove that En(S) ⊆ AT (I), for every nonnegative

integer n. For n = 0 the inclusion holds by the assumption of the lemma. Assume that

En(S) ⊆ AT (I). Since En+1(S) = Cn(En(S)∪KEn(S)∪¬K(LK,n−En(S)))∩LK,n+1,

we need to show that each of the three sets of generators for En+1(S) is included in

AT (I). By the induction hypothesis and by the fact that AT (I) is closed under

necessitation, first two sets are included in AT (I). Hence consider φ ∈ LK,n −En(S).

Then φ /∈ E(S) since En(S) = E(S)∩LK,n. Consequently ¬Kφ ∈ ¬KE(S) = ¬KT .

But ¬KT ⊆ AT
0 (I) ⊆ AT (I), hence ¬K(LK,n − En(S)) ⊆ AT (I). 2

Proof of Theorem 2.2. Let us assume that I = {Ai ⇒ ωi : i = 1, . . . , n}. Only

one implication needs a proof. Assume that T is an expansion of I. To prove the

theorem it suffices to show that T is iterative. First, notice that T is inconsistent

if and only if I is inconsistent. Thus, if T is inconsistent, then T satisfies T =

CnN (I ∪ ¬KT ), that is, T is an iterat ive expansion of I. Thus, assume now that

T is consistent. Then, the theorem characterizing consistent expansions applies to T

(see [Marek and Truszczyński, 1988]). It states that there is a subset J of {1, . . . , n}

such that T = E({ωi : i ∈ J}), and Ai ∈ T for each i ∈ J . Since each clause
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Ai ⇒ ωi of I is prerequisite-free, it follows that Ai ∈ ¬KT , for i ∈ J . Consequently,

{ωi : i ∈ J} ⊆ CnN (I ∪¬KT ) = AT (I). Thus, by Lemma 6.2, T ⊆ AT (I). Inclusion

AT (I) ⊆ T follows from Lemma 6.1(d). 2

Proof of Theorem 2.3. Denote An(I) = An(I)LK and A(I) = ALK (I), and observe

that CnN (I) = A(I). Consider a stable theory T such that I ⊆ T . We first prove

the following identity:

CnN (I ∪ ¬KT ) ∩ L = CnN (I) ∩ L. (8)

The equation (8) is clearly true if T is inconsistent. So, assume that T is consistent.

Clearly, it suffices to prove that for every integer n ≥ 0

AT
n (I) ∩ L ⊆ An(I) ∩ L. (9)

We proceed by induction on n. First, assume that n = 0 and let φ ∈ L. Assume

that φ /∈ Cn(I) = A0(I). Then, there is a valuation v of LK such that v(φ) = 0 and

v(ψ) = 1, for each clause ψ ∈ I. Define v′ by setting v′(Kψ) = 0 for each ψ /∈ T

and v′(ψ) = v(ψ), otherwise. Since all clauses in I are positively determined, we have

v′(ψ) = 1, for each ψ ∈ I. Thus, v′ evaluates each formula in I ∪ ¬KT to 1 and φ to

0. Consequently, φ /∈ Cn(I ∪ ¬KT ) = AT
0 (I). Thus, we have

AT
0 (I) ∩ L = Cn(I ∪ ¬KT ) ∩ L ⊆ Cn(I) ∩ L ⊆ A0(I) ∩ L.

This establishes the basis of the induction. Now, assume that (8) holds for some

n ≥ 0 and consider φ ∈ L such that φ /∈ An+1(I). Since An+1(I) = Cn(I ∪KAn(I))

(by Lemma 6.1(b)), there is a valuation v of LK such that v(φ) = 0 and v(ψ) = 1
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for every ψ ∈ I ∪ KAn(I). Define now valuation v′ of LK by letting v′(Kψ) = 1 if

ψ ∈ AT
n (I) \ L, v′(Kψ) = 0 if ψ ∈ T , and v′(ψ) = v(ψ) in all other cases.

Note that since T is stable and I ⊆ T , it follows that

KAT
n (I) ∪ ¬KT ⊆ T.

Since T is consistent, it follows that

KAT
n (I) ∩KT = ∅.

Thus, v′ is well-defined.

Clearly, the induction hypothesis implies that v′(Kψ) = 1 for every ψ ∈ AT
n (I).

Consider a formula ψ = Kα1 ∧ . . . ∧ Kαn ⇒ ω ∈ I. If for some αi, αi /∈ T , then

v′(Kαi) = 0 and v′(ψ) = 1. So suppose that for every i, αi ∈ T . Since each αi ∈ L, it

follows that v′(Kαi) = v(Kαi). Since v′(ω) = v(ω), we have that v′(ψ) = v(ψ) = 1.

Thus, for every ψ ∈ I, v′(ψ) = 1. Consequently, φ /∈ An(I). This completes the proof

of (8).

Now assume that I is N -inconsistent. Then LK is obviously the only solution to

T = CnN (I ∪ ¬KT ). (10)

Thus, assume that I is N -consistent. Let T be an iterative expansion of I. Then T is

consistent and, by (8), T ∩ L = CnN (I) ∩ L. Since T is stable, T = E(CnN (I) ∩ L).

Hence, an iterative expansion of I, if exists, is unique.

On the other hand, let T = E(CnN (I)∩L). Then, by Lemma 6.2, T ⊆ CnN (I ∪

¬KT ). Conversely, it is easy to see that I ⊆ E(CnN (I) ∩ L) = T . Since T is stable,
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it follows that CnN (I ∪ ¬KT ) ⊆ T . Thus, T is an iterative expansion of I, and by

the above argument the unique one. The second part of the assertion follows from

the observation that every stable set that contains I contains also CnN (I). 2

Proof of Theorem 2.4. We first define an auxiliary operator aT (I) by:

aT
0 (I) = Cn(I ∪ ¬K(L \ T )),

aT
n+1(I) = Cn(aT

n (I) ∪KaT
n (I)) (= Cn(I ∪ ¬K(L \ T ) ∪KaT

n (I))),

aT (I) =
∞⋃

n=0

aT
n (I).

First, we list some simple properties of the operator aT :

aT
n (I) ⊆ AT

n (I), (11)

aT (I) ⊆ AT (I). (12)

In addition, if T ′ ⊑ T , then

aT (I) ⊆ aT ′

(I). (13)

Finally, we will need the following equality that holds for stable theories T :

L ∩ aT
n (I) = L ∩ AT

n (I). (14)

We prove (14) by induction on n. So, let n = 0. By (11) we only need to prove that

L ∩ AT
0 (I) ⊆ L ∩ aT

0 (I). So, let φ ∈ L and assume that φ /∈ aT
0 (I). Then, there is a

valuation v of LK,1 such that v(I ∪ ¬K(L \ T )) = 1 and v(φ) = 0. Define v1 to be a

valuation of LK satisfying:

• v1(ψ) = v(ψ), for ψ ∈ LK,1,
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• v1(Kψ) = 0, for ψ ∈ LK \ L, ψ /∈ T .

Clearly, v1 exists, v1(I ∪ ¬KT ) = 1 and v1(φ) = 0. Thus, φ /∈ Cn(I ∪ ¬KT ).

Now, assume that n ≥ 1 and that (14) holds for n. To prove (14) for n + 1 it

suffices to prove that

L ∩ AT
n+1(I) ⊆ L ∩ aT

n+1(I).

Thus, by Lemma 6.1(b) and the definition of the operator aT
n , it will suffice to prove

that

L ∩ Cn(I ∪ ¬KT ∪KAT
n (I)) ⊆ L ∩ Cn(I ∪ ¬K(L \ T ) ∪KaT

n (I)).

Let φ ∈ L and assume that φ /∈ Cn(I ∪ ¬K(L \ T ) ∪ KaT
n (I)). Then, there is a

valuation of LK,1 ∪Ka
T
n (I) such that v(I ∪ ¬K(L \ T ) ∪KaT

n (I)) = 1 and v(φ) = 0.

Extend v to a valuation v1 of LK satisfying:

• v1(ψ) = v(ψ), for ψ ∈ I ∪ ¬K(L \ T ) ∪KaT
n (I),

• v1(Kψ) = 0, for ψ ∈ LK \ L, ψ /∈ T ,

• v1(Kψ) = 1, for ψ ∈ LK \ L, ψ ∈ AT
n (I).

Such a valuation exists since by (11) and stability of T we have aT
n (I) ⊆ AT

n (I) ⊆ T .

Note that if ψ ∈ AT
n (I) ∩ L then, by the induction hypothesis ψ ∈ aT

n (I). Therefore,

v1(Kψ) = 1. Consequently, v1(Kψ) = 1, for every ψ ∈ AT
n (I). Thus, v1(Cn(I ∪

¬KT ∪KAT
n (I))) = 1 and v1(φ) = 0. This implies that φ /∈ Cn(I ∪¬KT ∪KAT

n (I))

and completes the proof of (14).
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Now, assume that T is an iterative expansion of I and let T ′ be any expansion

(stable set) of I. Assume that T ′ ⊑ T . Then, by stability of T ′, T ′ ∩L ⊇ AT ′

(I)∩L.

Thus, by (14), (13) and again (14)

T ′ ∩ L ⊇ aT ′

(I) ∩ L ⊇ aT (I) ∩ L = AT (I) ∩ L.

Since T = AT (I), we get T ⊑ T ′. Thus, T = T ′. 2

Proof of Proposition 2.7. By Proposition 2.6, we need to prove that I ⊆ T . Let

C = Kα1 ∧ . . . ∧Kαm ∧ ¬Kβ1 . . . ∧ ¬Kβn ⇒ ω

be an ae-clause of I not in GC(I, T ). Then, by the definition of GC(I, T ), some

αi /∈ T or some βi ∈ T . In the first case C ∈ ¬KT ⊆ T since ¬Kαi ∈ ¬KT , in the

second, C ∈ T since Kβi ∈ T . 2

Proof of Proposition 3.1. Let T be a weak iterative expansion of I. Then, T =

Cn(I ∪ (T ⇒ KT ) ∪ ¬KT ). We want to prove that T = Cn(I ∪ T ∪ ¬KT ).

(inclusion ⊆) It is enough to prove that for every φ ∈ T , φ⇒ Kφ belongs to Cn(I ∪

T ∪ ¬KT ). This however is obvious since Kφ ∈ Cn(I ∪ T ∪ ¬KT ).

(inclusion ⊇) It is sufficient to prove that KT ⊆ T . But if φ ∈ T , then φ ⇒ Kφ

belongs to T ⇒ KT . Our assumption implies that T ⇒ KT ⊆ T , so φ ⇒ Kφ ∈ T .

Hence, by modus ponens Kφ ∈ T . 2

Proof of Proposition 3.2. T is an iterative expansion of I if and only if T = AT (I),

that is, T =
⋃∞

n=0A
T
n (I). We prove that T = Cn(I ∪ (T ⇒ KT ) ∪ ¬KT ).

(inclusion ⊇) Since T = AT (I), T is stable. Hence KT ⊆ T . But KT ⊆ T implies

(T ⇒ KT ) ⊆ T . Also I ∪ ¬KT ⊆ T . Consequently, I ∪ (T ⇒ KT ) ∪ ¬KT ⊆ T .
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Since T is closed under propositional consequence, Cn(I ∪ (T ⇒ KT ) ∪ ¬KT ) ⊆ T .

(inclusion ⊆) Since T =
⋃∞

n=0A
T
n (I), it suffices to prove that for all n ∈ N , AT

n (I) ⊆

Cn(I ∪ (T ⇒ KT ) ∪ ¬KT ). Since AT
0 (I) = Cn(I ∪ ¬KT ), the base case is obvious.

Assume that AT
n (I) ⊆ Cn(I ∪ (T ⇒ KT ) ∪ ¬KT ). Consider a formula Kφ, where

φ ∈ AT
n (I). Then, φ ∈ Cn(I ∪ (T ⇒ KT ) ∪ ¬KT ) by the induction hypothesis.

Moreover, φ ∈ T . Thus, φ ⇒ Kφ ∈ Cn(I ∪ (T ⇒ KT ) ∪ ¬KT ). Consequently,

Kφ ∈ Cn(I ∪ (T ⇒ KT ) ∪ ¬KT ). Hence, we obtain that KAT
n (I) ⊆ Cn(I ∪ (T ⇒

KT ) ∪ ¬KT ), and AT
n+1(I) = Cn(AT

n (I) ∪KAT
n (I)) ⊆ Cn(I ∪ (T ⇒ KT ) ∪ ¬KT ).

his completes the proof of the inductive step and of the entire proposition. 2

Proof of Theorem 3.3. By Proposition 3.2, we only need to prove that if T is a

weak iterative expansion of I, then T is an iterative expansion of I. Hence, let T be

a weak iterative expansion of I. In particular, by Proposition 3.1 T is an expansion

of I. Consequently, T is stable and by Lemma 6.1(d), AT (I) ⊆ T .

Thus, we need to prove that, under our assumptions, the converse inclusion holds

as well. Put S = T ∩ Lit. Since T is consistent, then the theorem characterizing

consistent expansions applies (see [Marek and Truszczyński, 1988]). It states that

each consistent expansion of a theory consisting of ae-clauses Ai ⇒ ωi, 1 ≤ i ≤ n, is

of the form E({ωi: i ∈ J}) for a suitable set J ⊆ {1, . . . , n}. Since the objective parts

of program T -clauses are literals, we conclude that T = E(S). In order to prove that

T ⊆ AT (I) we first prove that S ⊆ AT (I).

We use a construction similar to that of Gelfond and Lifschitz [1988] to reduce

I. The T -reduct of I, denoted by I/T is obtained from I by applying to each clause
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C ∈ I, say of the form

C = Ka1 ∧ . . . ∧Kak ∧ ¬KKb1 ∧ . . . ∧ ¬KKbr ⇒ s,

one of the following reduction rules:

(a) If ai /∈ T for some i ≤ k, then delete C.

(b) If bi ∈ T for some i ≤ r, then delete C.

(c) If neither (a) nor (b) applies (that is, if for all 1 ≤ i ≤ k, ai ∈ T and for all

1 ≤ i ≤ r, bi /∈ T ), then replace C by the clause Ka1 ∧ . . . ∧Kak ⇒ s.

The resulting theory I/T consists of clauses of the form Ka1 ∧ . . . ∧ Kak ⇒ s,

where a1, . . . , ak, s are literals, and a1, . . . , ak ∈ T . We shall prove now two basic

claims.

Claim 6.3 S = Lit ∩ Cn(I/T ∪ {a⇒ Ka: a ∈ S}). (In other words, theories T and

Cn(I/T ∪ {a⇒ Ka: a ∈ S}) contain precisely the same literals.)

Proof of Claim 6.3. First of all notice that I/T ⊆ Cn(I ∪ ¬KT ). Indeed, let C ′ =

Ka1 ∧ . . . ∧ Kak ⇒ s be in I/T . There is a clause C ∈ I from which C ′ was

obtained. Since C was not deleted, it follows that all the formulas of the form Kai

in the antecedent of C are left intact, and the formulas of the form ¬KKbj were

eliminated. Thus, for every 1 ≤ i ≤ r, bi /∈ T and ¬KKbi ∈ ¬KT . Consequently,

C ′ ∈ Cn(C ∪ ¬KT ) ⊆ Cn(I ∪ ¬KT ).

The collection {a ⇒ Ka: a ∈ S} is included in T ⇒ KT . This together with

inclusion I/T ⊆ Cn(I ∪ ¬KT ) implies that Cn(I/T ∪ {a ⇒ Ka: a ∈ S}) ⊆ Cn(I ∪

(T ⇒ KT ) ∪ ¬KT ) = T . Thus, all literals in Cn(I/T ∪ {a⇒ Ka: a ∈ S}) belong to
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S.

Conversely, assume that d ∈ Lit and that d /∈ Cn(I/T ∪ {a ⇒ Ka: a ∈ S}). We

will prove that d /∈ T . Let L′ be the language whose atoms are atoms of L and these

modal atoms Kψ for which ψ ∈ S. All formulas of I/T and of {a ⇒ Ka: a ∈ S})

belong to L′ and d ∈ L′, as well. Since d /∈ Cn(I/T ∪ {a ⇒ Ka: a ∈ S}), there is a

valuation v of the atoms of language L′ such that v takes value 1 on the whole theory

I/T ∪ {a⇒ Ka: a ∈ S}, but v(d) = 0.

We extend now the valuation v to a valuation v1 of the full language LK . This

language has more atoms than L′. Additional atoms are of the form Kψ, where

ψ /∈ S. Define now v1 as follows:

(1) If a is an atom of the language L′, then v1(a) = v(a).

(2) If a is an atom of LK but not of L′ (that is, a = Kψ for ψ /∈ S), then v1(Kψ) = 1

if and only if ψ ∈ T .

Clearly, v1 restricted to L′ coincides with v, and so v1(d) = 0. We will prove that

v1(ψ) = 1, for each ψ ∈ T , thus showing that d /∈ T and completing the proof of the

converse inclusion. To this end, we need to prove that v1 takes value 1 on each of the

sets I, T ⇒ KT , and ¬KT .

(i) Consider a clause C ∈ I, say C is of the form

Ka1 ∧ . . . ∧Kak ∧ ¬KKb1 ∧ . . . ∧ ¬KKbr ⇒ s.

If reduction rule (a) applies to C, then for some 1 ≤ i ≤ k, ai /∈ T . Since Kai /∈

L′, we have v1(Kai) = 0. Consequently, v1(C) = 1. If reduction rule (b) applies
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to C, then for some 1 ≤ i ≤ r, bi ∈ T . Thus, Kbi ∈ T , v1(KKb1) = 1 and

v1(¬KKbi) = 0. Hence v1(C) = 1. Finally, if neither (a) nor (b) applies, then all ai

belong to T and all bj do not belong to T . Then, however, v1(C) = v1(C
′), where

C ′ = Ka1 ∧ . . . ∧Kak ⇒ s. Now, C ′ ∈ L′ and so v1(C
′) = v(C ′). But C ′ ∈ I/T , so

v(C ′) = 1. Hence v1(C) = 1. Thus v1(C) = 1 for each C ∈ I.

(ii) Now consider a formula φ ⇒ Kφ for φ ∈ T . If φ ∈ S, then since φ ⇒ Kφ is a

formula of L′, v1(φ ⇒ Kφ) = v(φ ⇒ Kφ) = 1. Otherwise, φ /∈ S and v1(Kφ) = 1.

So, also in this case v1(φ⇒ Kφ) = 1.

(iii) Finally, if φ /∈ T then v1(Kφ) = 0, thus v1(¬Kφ) = 1.

Consequently, v1(ψ) = 1 for each ψ ∈ T , and since v1(d) = v(d) = 0, d /∈ T . This

completes the proof of Claim 6.3.

We continue the proof of Theorem 3.3. Now we shall prove that S ⊆ AT (I/T ).

To this end, let Z = AT (I/T ) ∩ Lit. Since AT (I/T ) ⊆ AT (I) ⊆ T , we have Z ⊆ S.

Assume Z is a proper subset of S and let d ∈ S\Z. By Claim 6.3, d ∈ Cn(I/T ∪{a⇒

Ka: a ∈ S}). Since d ∈ Cn(I/T ∪ {a ⇒ Ka: a ∈ S}) and Cn is the classical

consequence operation, we can use the deduction theorem for classical logic and get:

(
∧

a∈S

(a⇒ Ka)) ⇒ d ∈ Cn(I/T ).

The formula (
∧

a∈S(a ⇒ Ka)) ⇒ d can be transformed, by repeated elimination of

implication in the antecedent and the distributive law, into a conjunction:

∧

J⊆S

((
∧

a∈S\J

¬a ∧
∧

a∈J

Ka) ⇒ d).
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Hence, for every J ⊆ S the formula (
∧

a∈S\J ¬a∧
∧

a∈J Ka) ⇒ d belongs to Cn(I/T ).

In particular, since Z ⊆ S, (
∧

a∈S\Z ¬a ∧
∧

a∈Z Ka) ⇒ d belongs to Cn(I/T ). After

an elementary transformation we find that the clause (
∨

a∈Z ¬Ka) ∨ (d ∨
∨

a∈S\Z a)

belongs to Cn(I/T ).

We say that a clause C ′ = φ1 ∨ . . . ∨ φk is weaker than C = ξ1 ∨ . . . ∨ ξs if

{ξ1, . . . , ξs} ⊆ {φ1, . . . , φk}. In this case we also say that C is stronger than C ′. Let

us now represent all the formulas in I/T in the clausal form. We need the following

claim.

Claim 6.4 If a clause C ′ of the form ¬Ka1 ∨ . . . ∨ ¬Kak ∨ s1 ∨ . . . ∨ sm (where

a1, . . . , ak ∈ S, and s1, . . . , sm ∈ Lit) belongs to Cn(I/T ) but is not a tautology, then

for some clause C ∈ I/T , C is stronger than C ′.

Proof of Claim 6.4. Assume otherwise. Then, there is a clause C ′ = ¬Ka1 ∨ . . . ∨

¬Kak ∨ s1 ∨ . . . ∨ sm in Cn(I/T ) for which there is no stronger clause C ∈ I/T .

We define the following partial valuation v of L′:

• v(Ka1) = . . . = v(Kak) = 1.

• v(s1) = . . . = v(sm) = 0.

Since C ′ is not a tautology, this partial valuation v is well defined. Moreover, v(C ′) =

0. We will extend v to a valuation v1 of L′ such that for all C ∈ I/T , v1(C) = 1.

This will contradict C ′ ∈ Cn(I/T ) and will complete the proof of the claim.
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We complete now the proof of Theorem 3.3. To define v1 proceed as follows:

(1) set v1(Ka) = 0 for all modal atoms of L′ not appearing in C ′.

(2) for the unique literal s ∈ Lit appearing in a clause B ∨ s belonging to I/T and

such that B is stronger than ¬Ka1 ∨ · · · ∨ ¬Kak, define v1(s) = 1.

(3) for all other atoms of L′ define v1 arbitrarily.

We claim that v1 is well defined. Only rule (2) could cause a problem. First

suppose that rule (2) applies and assigns value 1 to a literal s that appears among

s1, . . . , sm , and thus was earlier assigned value 0. But then, B ∨ s is stronger than

C ′, contrary to our assumption. Next suppose, that there are two clauses in I/T to

which rule (2) applies, one containing literal s and the other one the negation of s.

Say these clauses are B ∨ s and B′ ∨ ¬s. But then both s and ¬ can be derived in

T (since Ka1, . . . , Kak ∈ T ). But this contradicts consistency of T . Thus, v1 is well

defined.

Consider now a clause C ∈ I/T . If one of the literals ¬Ka appearing in C does

not appear in C ′ then v1(Ka) = 0, v1(¬Ka) = 1 and so v1(C) = 1. If all the literals

of the form ¬Ka appearing in C appear in C ′, then the rule (2) was applicable. Thus,

for the unique literal s ∈ Lit appearing in C we have v1(s) = 1. Hence, v1(C) = 1.

Consequently, v1(C) = 1 for every C ∈ I/T .

Finally, note that v1(C
′) = v(C ′) = 0. Thus, C ′ /∈ Cn(I/T ), a contradiction. This

completes the proof of Claim 6.4.
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Let us return to the proof of the theorem. As we found earlier, formula

(
∨

a∈Z

¬Ka) ∨ (d ∨
∨

a∈S\Z

a) (15)

belongs to Cn(I/T ). This formula is not a tautology since all the literals of L that

appear in it belong to T (which is consistent). Since formula (15) belongs to Cn(I/T ),

it follows by Claim 6.4 that there is a clause C ∈ I/T that is stronger. Say C =

¬Kb1∨· · · ¬Kbt∨c. Then, each bi ∈ Z and c /∈ Z (recall that d /∈ Z). Since AT (I/T )

is closed under necessitation and Z ⊆ AT (I/T ), we obtain that Kbi ∈ AT (I/T ) for

every 1 ≤ i ≤ t. Since C ∈ AT (I/T ), it follows that c ∈ AT (I/T ), a contradiction

again.

Hence we proved that S ⊆ AT (I/T ) ⊆ AT (I). Thus Cn(S) ⊆ AT (I) that is,

E0(S) ⊆ AT (I). This, by Lemma 6.2, implies T ⊆ AT (I) and completes the proof of

the theorem. 2

Proof of Proposition 3.4. Assume first that T = Cn(I ∪ (T ⇒ KT ) ∪ ¬KT ).

Then, by (a), CnS(I ∪ ¬KT ) ⊆ Cn(I ∪ (T ⇒ KT ) ∪ ¬KT ) = T , and, by (b),

T = Cn(I ∪ (T ⇒ KT ) ∪ ¬KT ) ⊆ CnS(I ∪ ¬KT ). Thus, T = CnS(I ∪ ¬KT ).

Conversely, assume that T = CnS(I ∪ ¬KT ). Then, T is stable. Consequently,

Cn(I ∪ (T ⇒ KT ) ∪ ¬KT ) ⊆ T follows. Inclusion T ⊆ Cn(I ∪ (T ⇒ KT ) ∪ ¬KT )

follows from (a). 2

Proof of Theorem 4.2. In the proof we use the following auxiliary lemma.

Lemma 6.5 Let (D,W ) be a default theory and I = trT (D,W ). Let T be stable and

S = T ∩ L. If I ⊆ T then
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(a) For all n ∈ N , RD,S
n (W ) ⊆ AT

n (I),

(b) For all n ∈ N , AT
n (I) ∩ L ⊆ RD,S

n+1(W ),

(c) AT (I) ∩ L = RD,S
∞ (W ).

Proof. (a) We proceed by induction on n. Let n = 0. Then, since W ⊆ I,

RD,S
0 (W ) = Cn(W ) ⊆ Cn(I ∪ ¬KT ) = AT

0 (I).

Assume now that RD,S
n (W ) ⊆ AT

n (I). By Lemma 6.1(c), it suffices to show that

RD,S
n+1(W ) ⊆ Cn(I ∪ AT

n (I) ∪KAT
n (I)¬KT ).

Recall that

RD,S
n+1(W ) = Cn(RD,S

n (W ) ∪ {c(d) : d ∈ D, p(d) ∈ RD,S
n (W ), ∀β∈j(d) ¬β 6∈ S}).

By the induction hypothesis, RD,S
n (W ) ⊆ AT

n (I). Consider a default α: β1,...,βp

ω
from

D such that α ∈ RD,S
n (W ) and ¬βi 6∈ S, 1 ≤ i ≤ p. Then, Kα ∈ KAT

n (I) (by the

induction hypothesis) and, for 1 ≤ i ≤ p, ¬KK¬βi ∈ ¬KT (recall that S = T ∩ L).

Since trT (d) ∈ I, it follows that ω ∈ Cn(I ∪ AT
n (I) ∪KAT

n (I) ∪ ¬KT ).

(b) Again, we proceed by induction on n. We first show that AT
0 (I) ∩L ⊆ RD,S

1 (W ).

Suppose to the contrary, that there is a formula φ ∈ L such that φ ∈ AT
0 (I)\RD,S

1 (W ).

Since RD,S
1 (W ) is closed under propositional consequence, there exists a valuation v

such that v(φ) = 0, and v(ψ) = 1, for every ψ ∈ RD,S
1 (W ). Extend the valuation v to

a valuation v1 of the whole language LK as follows (1) v1(p) = v(p) if p is an atom

of L.

(2) For ψ ∈ L define v1(Kψ) = 1 if and only if ψ ∈ Cn(I ∩ L).

(3) For ψ /∈ L define: v1(Kψ) = 0 if and only if ψ ∈ T .
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Since I ⊆ T , it follows that for all ψ ∈ T , v1(Kψ) = 0. Thus, v1 takes value 1

on the set ¬KT . Note also that I ∩ L = W ⊆ RD,S
1 (W ). Thus, v1 takes value 1 on

the set I ∩ L. Now we shall determine the value of v1 on the set I \ L. Consider a

formula Φ ∈ I \ L. Let Φ = Kα ∧ ¬KK¬β1 ∧ . . . ∧ ¬KK¬βr ⇒ ω.

(i) If α /∈ Cn(I ∩ L) then v1(Kα) = 0 and so v1(Φ) = 1.

(ii) If for some j ≤ r, ¬βj ∈ T , then K¬βj ∈ T . Consequently, v1(¬KK¬β) = 0,

thus again v1(Φ) = 1.

(iii) If, finally, α ∈ Cn(I ∩ L) and for all j ≤ r,¬βj /∈ T , then α ∈ W and for all

j ≤ r,¬βj /∈ S. Consequently, ω ∈ RD,S
1 (W ). Thus v(ω) = v1(ω) = 1. This implies,

as before, that v1(Φ) = 1.

Hence, we proved that v1 takes value 1 on the whole set AT
0 (I). This implies, in

particular, that v1(φ) = 1, a contradiction, since v1(φ) = v(φ) = 0.

We shall perform now the inductive step. Let us assume that

AT
n (I) ∩ L ⊆ RD,S

n+1(W ).

We need to prove that

AT
n+1(I) ∩ L ⊆ RD,S

n+2(W ).

To prove this inclusion assume that its fails. Then, there is a formula φ ∈ L such

that φ ∈ AT
n+2(I) \ R

D,S
n+1(W ). Consequently, there is a valuation v of the language

L which takes value 1 on the set RD,S
n+1(W ) and 0 on φ. Extend now the valuation

v to a valuation v2 of the whole language LK as follows: (1) If p is an atom of L,

v2(p) = v(p).
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(2) When ψ ∈ L, then v2(Kψ) = 1 if and only if ψ ∈ RD,S
n+1(W ).

(3) When ψ /∈ L, then v2(Kψ) = 0 if and only if ψ ∈ T .

Now, by Lemma 6.1(b), AT
n+1(I) = Cn(I ∪KAn(I) ∪ ¬KT ). ¿From part (a) and

Lemma 6.1(d), it follows that RD,S
n+1(W ) ⊆ AT (I) ⊆ T Thus, v2 takes value 1 on the

theory ¬KT . We shall prove that v2 takes value 1 on the set KAT
n (I). Indeed, if

ψ ∈ AT
n (I) ∩ L then, by the induction hypothesis, ψ ∈ RD,S

n+1(W ), so v2(Kψ) = 1. If

ψ ∈ AT
n (I) \ L then, since AT

n (I) ⊆ T , ψ /∈ T . Thus v2(Kψ) = 1 in this case, too.

Finally, to show that v2 takes value 1 on I we just need to consider formulas of I \ L

(recall that I ∩ L = W ⊆ RD,S
n+1(W ) and v2(ψ) = v(ψ) = 1 for each ψ ∈ RD,S

n+1(W )).

Hence, let Φ ∈ I \L. Suppose that Φ = Kα∧¬KK¬β1∧ . . .∧¬KK¬βr ⇒ ω ∈ D(I).

(i) If α /∈ RD,S
n+1(W ), then v1(Kα) = 0 and so v2(Φ) = 1.

(ii) If for some j ≤ r,¬βj ∈ T , then K¬βj ∈ T , so v2(KK¬βj) = 1. Thus, v2(Φ) = 1.

(iii) Finally, assume that α ∈ RD,S
n+1(W ) and for all j ≤ r, ¬βj ∈ T . Then, in par-

ticular, ¬βj /∈ S, for all j ≤ r. Thus, ω ∈ RD,S
n+2(W ). But then v2(ω) = v(ω) = 1,

therefore v2(Φ) = 1.

This implies that v2 takes value 1 on the whole set AT
n+1(I), a contradiction.

Part (c) follows easily from (a) and (b) 2

We prove now Theorem 4.2. Let S be an extension of (D,W ), and let T be the

unique stable set such that S = T ∩ L. We need to prove that T = AT (I), where

I = trT (D,W ). The inclusion AT (I) ⊆ T follows from Lemma 6.1(d). To show inclu-

sion T ⊆ AT (I) we we first assume that S is inconsistent. Then , by Lemma 6.5(c),
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AT (I) is inconsistent and T ⊆ AT (I) follows. Hence, assume that S is consistent.

Then T = E(S).

To prove the inclusion T ⊆ AT (I) we observe that S ⊆ AT (I) follows from the

previous lemma. Thus, T ⊆ AT (I) follows from Lemma 6.2.

Conversely, if T is an iterative expansion of I, then, again by the previous lemma,

we find that S = T ∩ L = AT (I) ∩ L = RD,S
∞ (W ). Thus S is an extension of (D,W ).

2

Proof of Theorem 2.5. Let T = E(S) be an iterative expansion of I, where S is the

objective part of T , that is S = T ∩ L. In particular, S is closed under propositional

consequence. By Theorem 4.2(a), S is an extension of tr−1
T (I). Consequently, S is a

minimal set for tr−1
T (I) (Marek and Truszczyński [1989a], Proposition 4.3.1). Hence,

it follows that E(S) is a ⊑-minimal stable set for I (Marek and Truszczyński [1989a],

Theorem 4.3.6). 2

Proof of Corollary 4.3. First, for a T -clause C, where

C = (Kφ1 ∧ . . . ∧Kφk ∧ ¬KKψ1 ∧ . . . ∧ ¬KKψr ⇒ ω),

define a K-clause CK by

C = (Kφ1 ∧ . . . ∧Kφk ∧ ¬Kψ1 ∧ . . . ∧ ¬Kψr ⇒ ω).

Let I be a theory consisting of T -clauses. Define IK = {CK : C ∈ I}. Since for every

stable set T , ψ ∈ T if and only if Kψ ∈ T , it follows that I and IK have the same

GC-iterative expansions.
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Now we can prove the assertion. Let (D,W ) be a default theory such that

trT (D,W ) = I. Then, trK(D,W ) = IK. By Theorem 4.2, iterative expansions of

I correspond exactly to extensions of (D,W ) which in turn correspond exactly to

GC-iterative expansions of IK (by Theorem 4.1), and these, in turn, coincide with

GC-iterative expansions of I. 2
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